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a b s t r a c t 

Nonnegative matrix factorization (NMF) has been successfully used in many fields as 

a low-dimensional representation method. Projective nonnegative matrix factorization 

(PNMF) is a variant of NMF that was proposed to learn a subspace for feature extraction. 

However, both original NMF and PNMF are sensitive to noise and are unsuitable for fea- 

ture extraction if data is grossly corrupted. In order to improve the robustness of NMF, a 

framework named Projective Robust Nonnegative Factorization (PRNF) is proposed in this 

paper for robust image feature extraction and classification. Since learned projections can 

weaken noise disturbances, PRNF is more suitable for classification and feature extraction. 

In order to preserve the geometrical structure of original data, PRNF introduces a graph 

regularization term which encodes geometrical structure. In the PRNF framework, three 

algorithms are proposed that add a sparsity constraint on the noise matrix based on L 1 / 2 
norm, L 1 norm, and L 2 , 1 norm, respectively. Robustness and classification performance of 

the three proposed algorithms are verified with experiments on four face image databases 

and results are compared with state-of-the-art robust NMF-based algorithms. Experimental 

results demonstrate the robustness and effectiveness of the algorithms for image classifi- 

cation and feature extraction. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Nonnegative matrix factorization (NMF) [5] is a popular matrix factorization technique for dimensionality reduction

[15,30] and feature extraction [16,27] . NMF represents original input data as the output of two low-rank nonnegative ma-

trix factors. As a parts-based representation of original data, NMF only employs additive representation. In other words, all

elements must be equal to or greater than zero. With non-negativity constraints on the two matrix factors, NMF typically

yields a sparse representation of data and has been widely used in pattern recognition [28] , computer vision [11,31] , and

image processing [4,13] . 

Due to non-negativity constraints, NMF favors to sparse representation, but it does not always result in parts-based

representation [19] . To achieve localized NMF representation, Stan et al. [20] proposed local NMF (LNMF), which adds further

constraints on the two nonnegative factors. To encode discriminant information into NMF, Wang et al. [32] proposed a novel
∗ Corresponding author. Tel.: + 86 75526032458. 
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subspace method called Fisher NMF (FNMF), which also produces additive and spatially localized basis images as LNMF.

Yuan et al. proposed a novel NMF method that learns spatially localized and parts-based subspace representation of visual

patterns [34] . The learned localized features are not only suitable for image compression, but also for object recognition.

Yang et al. proposed a novel variant of NMF called projective NMF (PNMF) [35] . Linear and nonlinear extensions of PNMF

were introduced in [35] . 

Other studies try to combine further constraints or discriminant information into NMF to improve performance in classi-

fication [17,21] , or clustering [6,12] . In [21] , the authors proposed discriminant NMF (DNMF), which minimizes within-class

scatter and maximizes between-class scatter to learn the nonnegative factorization matrix. Guan et al. [17] encoded manifold

regularization and margin maximization into NMF and generated a new method, called manifold regularized discriminative

NMF (MD-NMF). In [6] , the authors proposed graph regularized NMF (GNMF), which encoded geometrical information of

the data space for clustering. Liu et al. [12] proposed a semi-supervised matrix decomposition method, called constrained

NMF (CNMF), that encoded label information into NMF for clustering. 

Although NMF and its related works have been successfully used in many fields, these methods are sensitive to noise.

Therefore, many methods have been proposed that design more robust algorithms to deal with noise. In [7] , the authors

proposed a robust NMF method (RNMF-21) using the L 2 , 1 norm as a loss function that can handle noise and outliers. Zhang

et al. [14] proposed a method named robust NMF (RNMF), which assumed that some matrix data entries could be arbitrarily

corrupted. Xia et al. [36] proposed a robust kernel NMF using the L 2 , 1 norm as a loss function. Shen et al. [3] proposed a

robust NMF algorithm (RNMF-1) that jointly approximated a clean data matrix with the product of two nonnegative matrices

and estimated the positions and values of outliers or noise. 

Recently, robust NMF and its extensions have been successfully applied to various tasks in image processing [18] , com-

puter vision [24] , and signal processing [13] . However, these algorithms encounter the following practical limitations: 1) in

many applications, data contains noise and the proposed robust NMF methods cannot effectively separate them using learn-

ing nonnegative low-dimensional representation; thus, learned projections or bases are unsuitable for feature extraction and

classification; 2) since samples of data lie on a low dimensional manifold embedded in high-dimensional ambient space, it

is necessary to consider the geometrical structure of data to obtain parts-based representation. Existing robust NMF meth-

ods do not take this into account. Specifically, existing robust NMF and its extensions do not consider the robustness and

manifold structure simultaneously. 

Inspired by recent studies in robust NMF, we propose a framework called Projective Robust Nonnegative Factorization

(PRNF) to overcome the aforementioned problems. PRNF projects original data on a low-dimensional subspace for robust

feature extraction and classification. In the proposed PRNF framework, noise is weakened and the learned projections are

more robust to noise, thus PRNF is suitable for classification. To preserve the geometrical structure of original data, PRNF

introduces graph regularization to encode the data geometrical structure in the learning steps. In the PRNF framework,

we introduce three regularization terms that encode the L 1 / 2 norm, L 1 norm, and L 2 , 1 norm as a sparsity constraint of the

noise matrix, respectively. Experimental results on four public face databases verify robustness and competitive performance

against existing robust NMF methods. 

The main contributions of this paper are as follows: 

(1) A general framework for robust NMF is proposed to conclude existing robust NMF algorithms. 

(2) A general model of the projective robust NMF algorithm is presented based on the robust NMF model. The proposed

framework, referred to as Projective Robust Nonnegative Factorization (PRNF), can not only weaken the influence of

noise when learning the optimal projection, but can also maintain the geometrical structure of original data for a

better parts-based representation. 

(3) Three algorithms that take different norms as the sparsity constraint on noise data are proposed. We propose three

algorithms based on the L 1 / 2 , L 1 , and L 2 , 1 norms for the noise matrix, and analyze their updated rules and prove the

algorithms’ convergence. 

This paper is organized as follows. Section 2 introduces the motivation for the proposed method and framework.

Section 3 provides an analysis of different noise distributions. Sections 4, 5 , and 6 give details on the three algorithms

with the L 1 / 2 , L 1 , and L 2 , 1 norms for the PRNF framework and their theoretical proof of convergence, respectively. Extensive

experimental results are presented in Section 7 . Section 8 concludes the paper. 

2. Framework for projective robust nonnegative factorization 

In this section, we introduce the proposed framework, i.e., Projective Robust Nonnegative Factorization (PRNF), for robust

face image classification and feature extraction. First, we explain details of the motivation for our method and then present

the unified framework with different norms. 

2.1. Motivation 

Standard NMF is sensitive to outliers and noise [25] . Many algorithms have been proposed to improve the robustness of

NMF [3,7,14] . However, existing robust NMF methods have shortcomings as discussed in the Introduction. To the best of our

knowledge, there is no algorithm that can separate clean data and noise effectively and maintain the geometrical structure
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of the data after projection. In this paper, we propose a robust framework named Projective Robust Nonnegative Factoriza-

tion (PRNF). PRNF not only projects original data on a low-dimensional subspace, but also encodes graph information in the

decomposition. Since PRNF introduces a noise term in the optimization model, it can learn the optimal projection for ro-

bust feature extraction, which can enhance classification accuracy by decreasing noise disturbance. PRNF also maintains the

geometrical structure of original data to avoid loss of structural information. In the PRNF framework, with different sparsity

constraints of noise matrices, we propose three algorithms that solve the problems in existing robust NMF methods. The

three optimization algorithms encode the L 1 / 2 norm, L 1 norm, and L 2 , 1 norm as constraints of the noise matrix, respectively.

Our method is the first to encode geometrical information into robust NMF and can separate noise from data in learning

the projections. The robust NMF and PRNF frameworks are described in the next two subsections. 

2.2. Framework of robust nonnegative matrix factorization 

NMF decomposes input matrix data X ∈ R M×N into the product of two nonnegative matrix factors U = ( u 1 , · · · , u k ) ∈ R M×K 

and V = ( v 1 , · · · , v N ) ∈ R K×N . However, NMF is sensitive to outliers and noise. In order to improve the robustness of NMF,

a common strategy is to add a noise matrix as a nonnegative part in the decomposition. Algorithms of robust NMF can be

formulated with the following optimization model 

min 

U≥0 ,V ≥0 ,E≥0 
loss (X, U V , E) + λ�(E) (1) 

where λ is a tradeoff parameter and E ∈ R M×N is the noise matrix. The first term in ( 1 ) denotes robust NMF, and the last

term of ( 1 ) denotes the regularized term either on U , V , or E, or any two of these. Most existing robust NMF methods can

be derived from the optimization model ( 1 ). Details of existing robust NMF methods are as follows. 

RNMF-21 [7] introduced the L 2 , 1 norm as the loss function. The model of RNMF-21 is 

min 

U≥0 ,V ≥0 
‖ 

X − UV ‖ 2 , 1 (2) 

When λ = 0 and there is no noise matrix E, model ( 1 ) becomes model ( 2 ) by using the L 2 , 1 norm as the loss function. 

In [14] , the authors proposed RNMF with the following objective function 

min 

U≥0 ,V ≥0 ,E 
‖ 

X − UV − E ‖ 

2 
F + λ‖ 

E ‖ 1 . (3) 

Function ( 3 ) coincides with ( 1 ). 

In order to encode partial corruption as additive noise, RNMF-1 [3] was proposed to classify data with noise. The cost

function of RNMF-1 is 

min 

U≥0 ,V ≥0 
‖ X − UV − E ‖ 

2 
F + λ

∑ 

j 

[ ‖ E . j ‖ 

1 
] 

2 
. (4) 

Function ( 4 ) also coincides with ( 1 ) when there is a noise matrix with the L 1 norm as the sparse constraint. 

2.3. Projective robust nonnegative factorization framework 

In practical applications, data usually contains noise or outliers. In the presence of noise, previous robust NMF methods

only focus on reducing the influence of outliers (i.e., RNMF-21) or noise (i.e., RNMF, RNMF-1) in factorization instead of

learning the projections for feature extraction. On the other hand, existing projection-based NMF methods do not take noise

or outliers into account and learned projections are affected by noise, which indicate that they cannot achieve good perfor-

mance in feature extraction and classification in noisy data. In this study, we use both the geometrical structure information

and robustness together for projection-based NMF. 

A general framework for projective robust nonnegative factorization is 

min 

U≥0 ,E≥0 
loss (X, U, E) , (5) 

where U denotes the base matrix, and E denotes the noise matrix. 

In order to encode other information for robust nonnegative factorization, one can add a regularization term to the above

model, denoted as �(U, E) . Then, we obtain a novel model 

min 

U≥0 ,E≥0 
loss (X, U, E) + λ�(U, E) . (6) 

In practical applications, the integrated local geometrical structure on robust nonnegative factorization is usually a regu-

larized term such as [21] 

tr(V L V 

T ) , (7) 

where L = D − W and W is the weight matrix of the nearest neighbor graph constructed by the data point at its vertices ( D

is a diagonal matrix where D ii = 

∑ 

j W i j ). 
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From functions ( 7 ) and ( 5 ), we encode geometrical information into projective NMF. A new model for the projective

robust nonnegative matrix method can be written as 

min 

U≥0 ,E≥0 

∥∥X − U U 

T X − E 
∥∥2 

F 
+ λT r( U 

T X L X 

T U) . (8)

Similar to [14] , we typically assume that the noise matrix is sparse and nonnegative. Thus, a sparsity constraint is added

to ( 8 ) 

min 

U≥0 ,E≥0 

∥∥X − U U 

T X − E 
∥∥2 

F 
+ λ1 T r( U 

T X L X 

T U) + λ2 ‖ 

E ‖ p , (9)

where ‖ � ‖ p represents p-norm of a matrix and λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters. 

The proposed PRNF framework (i.e., ( 9 )) has two advantages: 1) the learned projection matrix U avoids the negative

influence of noise, thus it is more suitable for robust feature extraction on noisy data; 2) with the graph encoded in the

model, learned projections preserve local geometrical structure, which further improves its performance since data lie on a

low-dimensional manifold. 

In this study, we explore three values of p (i.e., p = 1 / 2 , p = 1 , and p = 2 , 1 ) and the corresponding algorithms are

named PRNF-1/2, PRNF-1, and PRNF-21. Moreover, the corresponding updating rules and convergence proofs are given in

Sections 4–6 . By using different norms, we hope that the PRNF algorithms are suitable for different datasets with different

distributions of noise. 

3. Analysis of different noises distributions 

In this section, we analyze different noise distributions of the three proposed algorithms, i.e., PRNF-1/2, PRNF-1, and

PRNF-21. First, we analyze PRNF-1/2 and PRNF-1 that follow a Gaussian distribution. Next, we analyze PRNF-21 that follows

a Laplacian distribution with zero mean. Assume that the input data x i is an M-dimensional column vector contaminated by

additional noise e i 

x i = θi + e i , (10)

where θi is the unobservable true value of x i . θi can be viewed as a point in a M-dimensional space such that 

θi = U U 

T x i . (11)

We assume that the noise e i follows a Gaussian distribution 

p( x i | θi ) ∼
1 √ 

2 πσ
exp 

{
−‖ 

x i − θi ‖ 

2 

2 σ 2 

}
. (12)

In order to maximize the data log likelihood, we obtain, 

max 
θi 

log 

N ∏ 

i =1 

p( x i | θi ) = max 
θi 

{ 

N log 
1 √ 

2 πσ
−

N ∑ 

i =1 

‖ 

x i − θi ‖ 

2 

2 σ 2 

} 

. (13)

Maximizing the data log likelihood is equivalent to minimizing the term 

∑ N 
i =1 ‖ x i − θi ‖ 2 in ( 13 ). We have

arg min 

θi ≥0 

∑ N 
i =1 ‖ x i − θi ‖ 2 = arg min 

θi ≥0 

∑ N 
i =1 ‖ x i − θi ‖ 1 = arg min 

θi ≥0 

∑ N 
i =1 ‖ x i − θi ‖ 1 / 2 , thus, the minimization of 

∑ N 
i =1 ‖ x i − θi ‖ 2 is

equal to the minimization of 
∑ N 

i =1 ‖ x i − θi ‖ 1 and 

∑ N 
i =1 ‖ x i − θi ‖ 1 / 2 . Thus, we obtain ( 14 ) and ( 15 ) by substituting θi with

 U 

T x i , 

min 

θi 

N ∑ 

i =1 

‖ 

x i − θi ‖ 1 = min 

U≥0 

N ∑ 

i =1 

∥∥x i − U U 

T x i 
∥∥

1 
= min 

E≥0 
‖ 

E ‖ 1 , (14)

min 

θi 

N ∑ 

i =1 

‖ 

x i − θi ‖ 1 / 2 = min 

U≥0 

N ∑ 

i =1 

∥∥x i − U U 

T x i 
∥∥

1 / 2 
= min 

E≥0 
‖ 

E ‖ 1 / 2 . (15)

This means that assumption of a Gaussian noise model transfers the maximum likelihood problem into L 1 / 2 and L 1
problems by imposing the constraints U ≥ 0 and E ≥ 0 . 

Assume that the noise e i follows a Laplacian distribution with zero mean 

p( x i | θi ) ∼ exp 

{
−‖ 

x i − θi ‖ 

γ

}
, (16)

where γ is a scalar parameter. 
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To maximize the data log likelihood, we obtain 

max 
θi 

log 

N ∏ 

i =1 

p( x i | θi ) = max 
θi 

− 1 

γ

N ∑ 

i =1 

‖ 

x i − θi ‖ 

. (17) 

Maximizing data log likelihood is equivalent to minimizing the term 

∑ N 
i =1 ‖ x i − θi ‖ in ( 17 ). Thus we obtain ( 18 ) by substi-

tuting θi with U U 

T x i , 

min 

θi 

N ∑ 

i =1 

‖ 

x i − θi ‖ 

= min 

U≥0 

N ∑ 

i =1 

∥∥x i − U U 

T x i 
∥∥ = min 

E≥0 
‖ 

E ‖ 2 , 1 . (18) 

This means that the assumption of a Laplacian noise model transfers the maximum likelihood problem into an L 2 , 1 
problem by imposing the constraints U ≥ 0 and E ≥ 0 . 

4. Projective robust nonnegative factorization via L 1 / 2 norm 

In this section, the L 1 / 2 norm is used as the sparsity constraint on the noise matrix. A new optimization model and its

iterative rules are proposed. We also prove the convergence of the proposed algorithm. 

4.1. Objective function and updating rules 

The L 1 / 2 regularizer is an unbiased estimator that imposes strong sparsity on the minimization problem [37] . Further-

more, the L 1 / 2 regularizer can not only provide sparse solutions, but also provides computation efficiency. 

The objective function based on the F-norm of a matrix can be presented as 

min 

U≥0 ,E≥0 

∥∥X − U U 

T X − E 
∥∥2 

F 
+ λ1 T r( U 

T X L X 

T U) + λ2 ‖ 

E ‖ 1 / 2 , (19) 

where λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters and ‖ E‖ 1 / 2 is defined as 

‖ 

E ‖ 1 / 2 = 

M ∑ 

i =1 

N ∑ 

j=1 

e 1 / 2 
i j 

. (20) 

Let ψ ik and φi j be the Lagrange multiplier for constraints u ik ≥ 0 and e i j ≥ 0 , respectively. Define matrix 
 = [ ψ ik ] and

� = [ φi j ] . The Lagrange L can be presented as 

L = ‖ X − U U 

T X − E ‖ 

2 
F + λ1 T r( U 

T X L X 

T U) + λ2 ‖ E‖ 1 / 2 + T r(
U 

T ) + T r(�E T ) 

= T r((X − E) (X − E) T ) − 2 T r(U U 

T X (X − E) T ) + T r(U U 

T X X 

T U U 

T ) + λ1 T r( U 

T X L X 

T U) 

+ λ2 ‖ E‖ 1 / 2 + T r(
U 

T ) + T r(�E T ) . (21) 

Partial derivatives of L with respect to U and E are 

∂L 

∂U 

= −4(X − E) X 

T U + 4 U U 

T X X 

T U + 2 λ1 X L X 

T U + 
, (22)

∂L 

∂E 
= 2(E − X ) + 2 U U 

T X + 

λ2 

2 

E −
1 
2 + �. (23) 

E −1 / 2 is given by the sum of element-wise square roots of each entry in matrix E [33] . 

According to the Karush–Kuhn–Tucker conditions ψ ik u ik = 0 and φi j e i j = 0 , let ∂L 
∂U 

= 0 and 

∂L 
∂V 

= 0 , so that we obtain 

(4(X − E) X 

T U − 4 U U 

T X X 

T U −2 λ1 X L X 

T U) ik u ik = 0 , (24) 

(
2(X − E) − 2 U U 

T X − λ2 

2 

E −
1 
2 

)
i j 

e i j = 0 . (25) 

From ( 24 ) and ( 25 ), we obtain the following 

u ik ← u ik 

(2 X X 

T U + λ1 X W X 

T U) ik 
(2 E X 

T U + 2 U U 

T X X 

T U + λ1 X D X 

T U) ik 
, (26) 

e i j ← e i j 

(2 X ) i j 

T λ2 − 1 
2 

. (27) 

(2 E + 2 U U X + 

2 
E ) 

i j 
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4.2. Convergence analysis 

In this subsection, we prove the convergence of the optimization ( 19 ). Regarding iterative updating rules ( 26 ) and ( 27 ),

we have the following theorem: 

Theorem 1. Objective function ( 19 ) is nonincreasing under the updating rules in ( 26 ) and ( 27 ) . 

Similar to [12] and [1] , we also introduce an auxiliary function to prove Theorem 1 , in which the following definition

and lemma are needed: 

Definition 1. Function G (u, u ′ ) is an auxiliary function for F (u ) if the conditions G (u, u ′ ) ≥ F (u ) , G (u, u ) = F (u ) are satisfied.

Lemma 1. If G is an auxiliary function of F , then F is non-increasing under the update 

u 

(t+1) = arg min 

u 
G (u, u 

′ ) . (28)

We define an appropriate auxiliary function for objective function ( 19 ). For any element u ab in U , let F u ab 
denote the

part of ( 19 ) relevant to u 
ab 

. We prove that F u ab 
is non-increasing under the updating step of ( 33 ) by defining the auxiliary

function regarding u 
ab 

as follows: 

Lemma 2. Function 

G (u, u 

t 
ab ) = F u ab 

(u 

t 
ab ) + F ′ u ab 

(u 

t 
ab )(u − u 

t 
ab ) + 

(2 E X 

T U + 6 U U 

T X X 

T U + λ1 X D X 

T U) ab 

u 

t 
ab 

( u − u 

t 
ab ) 

2 , (29)

is an auxiliary function for F u ab 
, which is the only part of ( 19 ) relevant to u 

ab 
. 

Proof. Since G (u, u ) = F u ab 
(u ) , we only need to prove that G (u, u t ab ) ≥ F u ab 

(u ) . We compare G (u, u t ab ) in ( 36 ) with the Taylor

series expansion of F u ab 
(u ) 

F u ab 
(u ) = F u ab 

( u 

t 
ab ) + F ′ u ab 

( u 

t 
ab )(u − u 

t 
ab ) + 

1 

2 

F ′′ u ab 
( u 

t 
ab ) (u − u 

t 
ab ) 

2 , (30)

where F ′′ u ab 
is the second order derivative with respect to U . It is straightforward to check that 

F ′ u ab 
= (−4(X − E) X 

T U + 4 U U 

T X X 

T U + 2 λ1 X L X 

T U) ab , 

F ′′ u ab 
= (−4 X (X − E) 

T + 12 X X 

T U U 

T + 2 λ1 X L T X 

T ) aa . 
(31)

Using ( 31 ) in ( 30 ) and comparing with ( 29 ), we see that to prove G (u, u t 
ab 

) ≥ F u ab 
(u ) is equivalent to proving 

(2 E X 

T U + 6 U U 

T X X 

T U + λ1 X D X 

T U) ab 

u 

t 
ab 

≥ 1 

2 

F ′′ u ab 
( u 

t 
ab ) . (32)

In order to prove the above inequality, we have 

(E X 

T U) ab ≥ u 

t 
ab 

(X (E − X ) 
T 
) aa , 

(U U 

T X X 

T U) ab ≥ u 

t 
ab 

(X X 

T U U 

T ) aa , 

(X L X 

T U) ab ≥ u 

t 
ab 

(X L T X 

T ) aa . 

(33)

Thus, ( 32 ) holds and G (u, u t 
ab 

) ≥ F u ab 
(u ) . �

Next, we define another auxiliary function for the updating rule in ( 27 ). Let F e ab 
denote the part of ( 19 ) relevant to e 

ab 
.

We prove that F e ab 
is non-increasing under the updating step of ( 27 ) by defining the auxiliary function regarding e 

ab 
as

follows. 

Lemma 3. Function 

G (e, e t ab ) = F e ab 
(e t ab ) + F ′ e ab 

(e t ab )(e − e t ab ) + 

(2 E + 2 U U 

T X + 

λ2 

2 
E −

1 
2 ) 

ab 

e t 
ab 

(e − e t ab ) 
2 , (34)

is an auxiliary function for F e ab 
, which is the only part of O relevant to e 

ab 
. 

Proof. Since G (e, e ) = F e ab 
(e ) , we only need to show that G (e, e t ab ) ≥ F e ab 

(e ) by comparing G (e, e t ab ) in ( 34 ) with the Taylor

series expansion of F e ab 
(e ) 

F e ab 
(e ) = F e ab 

(e t ab ) + F ′ e ab 
(e t ab )(e − e t ab ) + 

1 

2 

F ′′ e ab 
(e t ab ) (e − e t ab ) 

2 , (35)

where F ′′ e ab 
is the second order derivative with respect to E. It is straightforward to check that 



22 Y. Lu et al. / Information Sciences 364–365 (2016) 16–32 

 

 

 

 

 

 

 

 

 

 

F ′ e ab 
= 

(
2(E − X ) + 2 U U 

T X + 

λ2 

2 

E −
1 
2 

)
ab 

, 

F ′′ e ab 
= 

(
2 I − λ2 

4 

E −
3 
2 

)
aa 

. (36) 

Using ( 36 ) in ( 35 ) and comparing with ( 34 ), we see that to prove G (e, e t ab ) ≥ F e ab 
(e ) is equivalent to proving 

(2 E + 2 U U 

T X + 

λ2 

2 
E −

1 
2 ) 

ab 

e t 
ab 

≥ 1 

2 

F ′′ e ab 
( e t ab ) . (37) 

Obviously, ( 37 ) holds and G (e, e t ab ) ≥ F e ab 
(e ) . �

Proof of Theorem 1. Using G (u, u t 
ab 

) from ( 29 ) in ( 28 ) and using G (e, e t 
ab 

) from ( 34 ) in ( 28 ), we obtain 

u ab 
(t+1) = arg min 

u 
G (u, u ab 

(t) ) = u ab 
t (2 X X 

T U + λ1 X W X 

T U) ab 

(2 E X 

T U + 2 U U 

T X X 

T U + λ1 X D X 

T U) ab 

, 

e ab 
(t+1) = arg min 

v 
G (e, e ab 

(t) ) = e t 
ab 

(2 X ) ab 

(2 E + 2 U U 

T X + 

λ2 

2 
E −

1 
2 ) 

ab 

. 

Since ( 29 ) and ( 34 ) are auxiliary functions, F u ab 
and F e ab 

are nonincreasing under the updating rule. �

5. Projective robust nonnegative factorization via L 1 norm 

In this section, we add the L 1 norm on the noise matrix as the sparsity constraint and propose a new optimization

model. Iterative rules are proven to be convergent based on the Euclidean distance as a metric. 

5.1. Objective function and updating rules 

Standard NMF must satisfy a Gaussian distribution [7] . However, in practice, input data always contains outliers or noise.

Standard NMF is sensitive to outliers or noise. The L 0 norm is used to obtain the sparsity solution in computer vision or

machine learning, but optimization of the L 0 norm is difficult. The theory of compressive sensing [8] shows that the L 1 norm

can still obtain a sparse solution. In the PRNF framework, the L 1 norm is introduced as the constraint of sparsity for noise.

Independent of the type of noise, the L 1 norm can effectively weaken the disturbance. 

The new optimization model is given as 

min 

U≥0 ,E≥0 

∥∥X − U U 

T X − E 
∥∥2 

F 
+ λ1 T r( U 

T X L X 

T U) + λ2 ‖ 

E ‖ 1 . (38) 

The difference between optimization models ( 19 ) and ( 38 ) is that the noise matrix in ( 19 ) is with the L 1 / 2 norm, but ( 38 )

is with the L 1 norm. 

The iterative updating rule of ( 38 ) about U is the same as ( 26 ). The updating rule of variable U and its proof of conver-

gence are the same as in Section 4 . Due to space limitations, we only introduce the updating rule of variable E and prove

its convergence. The iterative updating rule of ( 38 ) about E is 

E ← T λ2 
2 

(X − U U 

T X ) , (39) 

where T denotes the soft-thresholding operator [9] , which is given in the next subsection. 

5.2. Convergence analysis 

When E is given, the iterative updating rule for ( 38 ) is the same as ( 26 ) and the proof of convergence is also the same

as in Section 4 ; thus, it is omitted here. 

When U is given, the iterative updating rule ( 39 ) can be represented as the following L 1 minimization problem 

min 

v 

1 

2 

‖ 

x − v ‖ 

2 
F + λ1 ‖ 

v ‖ 1 . (40) 

The unique solution v ∗ of ( 40 ) is solved by the soft-thresholding operator [9] using the following theorem: 

Theorem 2. The optimal solution of ( 40 ) can be solved by the soft-thresholding operator, which is defined as 

T v (x ) = 

{ 

x − v , x > v 
x + v , x < −v 
0 , otherwise 

, (41) 

where x ∈ R and v > 0 . 

According to Theorem 2 , the optimal solution of problem ( 38 ) is T λ2 
2 

(X − U U 

T X ) . Thus, the updating rules of model ( 38 )

are ( 26 ) and ( 39 ). 
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6. Projective robust nonnegative factorization via L 2 , 1 norm 

In this section, we introduce the third algorithm of PRNF (i.e., PRNF-21) with the L 2 , 1 norm as a constraint on the noise

matrix. We describe the algorithm model and its iterative updating rules, and then prove the convergence. 

6.1. Objective function and updating rules 

From a probability point of view, the L 2 , 1 norm follows a Laplacian distribution with zero mean [7] . The L 2 , 1 regulariza-

tion penalizes each matrix row and enhances sparsity among matrix rows, thus selecting the most prominent morphometric

variables [10] . 

The objective function of PRNF-21 is defined as 

min 

U≥0 ,E≥0 

∥∥X − U U 

T X − E 
∥∥2 

F 
+ λ1 T r( U 

T X L X 

T U) + λ2 ‖ 

E ‖ 2 , 1 , (42)

where ‖ E‖ 2 , 1 = 

∑ N 
i =1 

√ ∑ M 

j=1 e 
2 
ji 

= 

∑ N 
i =1 ‖ E i ‖ and E i is the i th column of E. 

Model ( 42 ) adds the L 2 , 1 norm as a sparsity constraint on noise, which is different from ( 19 ) and ( 38 ). The updating rule

of variable U and its proof of convergence are the same as in Section 4 . Due to space limitations, we only introduce the

updating rule of variable E and prove its convergence. 

Let φi j be the Lagrange multiplier for constraints e i j ≥ 0 . Define matrix � = [ φi j ] . The Lagrange L can be presented as 

L = ‖ X − U U 

T X − E ‖ 

2 
F + λ1 T r( U 

T X L X 

T U) + λ2 ‖ E‖ 2 , 1 + T r(�E T ) 

= T r((X − E) (X − E) T ) − 2 T r(U U 

T X (X − E) T ) + T r(U U 

T X X 

T U U 

T ) + λ1 T r( U 

T X L X 

T U) 

+ λ2 ‖ 

E ‖ 2 , 1 + T r(�E T ) . (43)

The partial derivative of L with respect to E is 

∂L 

∂E 
= 2(E − X ) + 2 U U 

T X + 

λ2 

2 

EG + �, (44)

where G ii = 1 / ‖ E i ‖ 2 . 
According to the Karush–Kuhn–Tucker condition φi j e i j = 0 , we obtain the following 

e i j ← e i j 

(2 X ) i j 

(2 E + 2 U U 

T X + 

λ2 

2 
EG ) 

i j 

. (45)

6.2. Convergence analysis 

In order to prove convergence for the updating rule of ( 45 ), we first give the following lemma. We define another auxil-

iary function for the updating rule in ( 45 ). Let F e ab 
denote the part of ( 42 ) relevant to e 

ab 
. We prove that F e ab 

is non-increasing

under the updating rule ( 45 ) by defining the auxiliary function regarding e 
ab 

as follows: 

Lemma 4. Function 

G (e, e t ab ) = F e ab 
(e t ab ) + F ′ e ab 

(e t ab )(e − e t ab ) + 

(2 E + 2 U U 

T X + 

λ2 

2 
EG ) 

ab 

e t 
ab 

(e − e t ab ) 
2 , (46)

is an auxiliary function for F e ab 
, which is the only part of O relevant to e 

ab 
. 

Proof. Since G (e, e ) = F e ab 
(e ) , we only need to show that G (e, e t ab ) ≥ F e ab 

(e ) by comparing G (e, e t ab ) in ( 46 ) with the Taylor

series expansion of F e ab 
(e ) 

F e ab 
(e ) = F e ab 

(e t ab ) + F ′ e ab 
(e t ab )(e − e t ab ) + 

1 

2 

F ′′ e ab 
(e t ab ) (e − e t ab ) 

2 , (47)

where F ′′ e ab 
is the second order derivative with respect to E. It is straightforward to check that 

F ′ e ab 
= 

(
2(E − X ) + 2 U U 

T X + 

λ2 

2 

EG 

)
ab 

, 

F ′′ e ab 
= 

(
2 I + 

λ2 

4 

G 

)
aa 

. 

(48)

Using ( 48 ) in ( 47 ) and comparing with ( 46 ), we see that to prove G (e, e t ab ) ≥ F e ab 
(e ) is equivalent to proving 

(2 E + 2 U U 

T X + 

λ2 

2 
EG ) 

ab 

e t 
ab 

≥ 1 

2 

F ′′ e ab 
( e t ab ) . (49)
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Obviously, ( 49 ) holds and G (e, e t ab ) ≥ F e ab 
(e ) . �

To prove that the objective function of ( 42 ) decreases monotonically when updating G while fixing E and U , we give the

lemma as follows: 

Lemma 5. Under the updating rule of ( 45 ), the following holds 

‖ E t+1 ‖ 2 , 1 ≤ ‖ E t ‖ 2 , 1 . (50) 

Proof. First, note that 

‖ E t+1 ‖ 2 , 1 − ‖ E t ‖ 2 , 1 = 

N ∑ 

i 

(‖ E t+1 
i 

‖ − ‖ E t i ‖ ) = 

N ∑ 

i 

(
‖ E t+1 

i 
‖ − 1 

G ii 

)
, (51) 

and 

1 

2 

[ T r E t+1 G ( E t+1 ) T − T r E t G ( E t ) T ] = 

1 

2 

N ∑ 

i 

( 
∥∥E t+1 

i 

∥∥2 
G ii −

∥∥E t i 

∥∥2 
G ii ) = 

1 

2 

N ∑ 

i 

(∥∥E t+1 
i 

∥∥2 
G ii −

1 

G ii 

)
, (52) 

since 

‖ E t+1 ‖ 2 , 1 − ‖ E t ‖ 2 , 1 − 1 

2 

[ T r E t+1 G ( E t+1 ) T − T r E t G ( E t ) T ] 

= 

N ∑ 

i 

(
‖ E t+1 

i 
‖ − 1 

2 

‖ E t+1 
i 

‖ 

2 G ii −
1 

2 G ii 

)

= 

N ∑ 

i 

G ii 

2 

(
2 ‖ E t+1 

i 
‖ 

G ii 

− ‖ E t+1 
i 

‖ 

2 − 1 

G 

2 
ii 

)
= 

N ∑ 

i 

−G ii 

2 

(
‖ E t+1 

i 
‖ − 1 

G ii 

)2 

≤ 0 . 

That is ∥∥E t+1 
∥∥

2 , 1 
−

∥∥E t 
∥∥

2 , 1 
≤ 1 

2 

[ T r E t+1 G ( E t+1 ) T − T r E t G ( E t ) T ] = 

1 

2 

( 
∥∥E t+1 

∥∥
2 , 1 

−
∥∥E t 

∥∥
2 , 1 

) . 

Since ∥∥E t+1 
∥∥

2 , 1 
−

∥∥E t 
∥∥

2 , 1 
≤ 0 . 

Thus, Lemma 5 is proven. �

From Lemma 5 , objective function ( 42 ) decreases monotonically when updating G while fixing E and U . 

7. Experimental results 

In this section, we systematically evaluate the proposed Projective Robust Nonnegative Factorization (PRNF) framework 

for robust face recognition. We evaluate the performance of PRNF-1/2, PRNF-1, and PRNF-21 in terms of outliers, noise,

random corruption, and occlusions. 

7.1. Databases 

Four different publicly available databases are used in our experiments, i.e., YALE [38] , ORL [26] , CMU PIE [23,41] , and

AR [2,40] . The YALE face database contains 165 images of 15 individuals (each person provided 11 different images) with

various facial expressions and lighting conditions. The ORL face database contains 40 distinct subjects. All subjects are in

the up-right, frontal position (with some tolerance for side movement). The CMU PIE database contains 41,368 face images

collected from 68 subjects. Each subject has 13 images with different poses, 43 different illumination conditions, and 4

different expressions. In our experiment, a subset of 5 near frontal poses (C05, C07, C09, C25, and C29) and illuminations

indexed as 08 and 11 were used. Therefore, each subject has ten images. The AR face database contains over 40 0 0 color

face images of 126 people (70 men and 56 women), including frontal face views with different facial expressions, lighting

conditions, and occlusions. Pictures of most individuals were taken at two instances (separated by two weeks). Each instance

contains 13 color images and 120 individuals (65 men and 55 women) that participated in both sessions. In the experiments,

we exploit color face images of 100 subjects (50 men and 50 women) as shown in [29] . Color images were converted to

gray-level images. Fig. 1 shows sample images from the above four databases. Each row shows seven images captured at

different conditions for one subject. All images in our experiments were resized to 56 × 46 pixels. 
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Fig. 1. Sample images from YALE (first row), ORL (second row), PIE (third row), and AR (fourth row). Each row shows seven images captured under different 

situations for one subject. 

Fig. 2. Images with “salt & pepper” noise for YALE, ORL, and PIE, respectively. 

Table 1 

The performance (recognition rate (%) and standard deviation) of testing noises with different methods on YALE, ORL, and PIE face 

databases. 

Databases NMF RNMF-21 RNMF-1 RNMF PRNF-1/2 PRNF-1 PRNF-21 

YALE 86.89 ± 1.24 88.77 ± 2.19 82.16 ± 2.52 85.11 ± 3.47 92.78 ± 2.18 90.33 ± 3.72 93.86 ± 2.43 

ORL 78.50 ± 1.55 77.65 ± 2.57 79.20 ± 3.13 81.65 ± 3.77 85.00 ± 3.36 84.20 ± 2.98 87.50 ± 3.51 

PIE 71.67 ± 4.44 73.21 ± 3.75 75.81 ± 4.19 76.69 ± 3.26 83.12 ± 4.15 84.88 ± 5.14 85.76 ± 2.81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2. Baselines and settings 

Our experiments are divided into four parts, which include testing of outliers, noise, random corruption, and occlusions.

We use YALE, ORL, and PIE databases to test the performance of PRNF-1/2, PRNF-1, and PRNF-21 with data containing

outliers, noise, and random corruption. The AR database was used for testing classification accuracy of the PRNF framework

for face images with occlusions. We compared our method with the algorithms of NMF [5] and related works of robust NMF,

i.e., RNMF-21 [7] , RNMF [14] , and RNMF-1 [3] . We use a training set to learn the basis/projection used for feature extraction

and a test set to report the accuracy of face recognition. The NN classifier is used to calculate the percentage of samples in

the test set that were correctly classified. We set the maximum iteration number for NMF-related methods as 500 and keep

it constant in all experiments. NMF and RNMF-21 have no parameters. RNMF-1 and RNMF both have only one parameter λ.

We select it via cross validation from [0.0 0 01, 0.0 01, 0.01, 0.1, 1, 10]. The proposed PRNF framework has two parameters, λ1

and λ2 , that we select from the range [0, 1]. According to the experiments, we obtain the best classification accuracy when

the parameters are chosen in the range [0.01, 0.2]. 

7.3. Face recognition with noise 

In this subsection, we add “salt & pepper” noise to the YALE, ORL, and PIE databases to test the robustness of the PRNF

framework. The density of “salt & pepper” noise was set to 0.1. Fig. 2 shows images of “salt & pepper” noise in the three

databases. Fig. 3 shows experimental results for the YALE, ORL, and PIE databases. In these three databases, we randomly

selected five images from each subject to construct the training set, and the remaining images made up the test set. Each

experiment was conducted ten times over different feature dimensions and the average accuracy is reported. 
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Fig. 3. Face recognition accuracy with “salt & pepper” noise over different f eature dimensions for NMF, RNMF-21, RNMF-1, RNMF, PRNF-1/2, PRNF-1, and 

PRNF-21 on three databases: (a) YALE, (b) ORL, (c) PIE. 

Table 2 

The performance (recognition rate (%) and standard deviation) of testing corruption with different methods on YALE, ORL, and PIE 

face databases. 

Databases NMF RNMF-21 RNMF-1 RNMF PRNF-1/2 PRNF-1 PRNF-21 

YALE 77.78 ± 2.13 78.89 ± 2.69 76.67 ± 4.12 80.30 ± 3.07 82.68 ± 2.18 81.88 ± 1.82 84.32 ± 2.08 

ORL 30.00 ± 3.54 30.04 ± 1.15 31.10 ± 2.29 46.84 ± 3.56 56.80 ± 2.25 54.70 ± 4.04 57.60 ± 2.10 

PIE 56.81 ± 4.05 57.80 ± 3.68 58.11 ± 1.38 59.33 ± 2.26 67.59 ± 2.67 71.10 ± 3.05 69.26 ± 2.26 

 

 

 

 

 

 

From Fig. 3 and Table 1 , we see that the three algorithms in the PRNF framework obtain better recognition rates than

other robust NMF methods, which shows the proposed methods’ robustness to noise. 

7.4. Face recognition with random pixel corruption 

In this subsection, we randomly add blocks to images and keep the remaining part unchanged. The size of the block oc-

clusion used is 14 ×14. Fig. 4 shows images with random corruption in our experiments for the YALE, ORL, and PIE databases.

The experimental procedure is the same as in Section 7.3 . Fig. 5 and Table 2 show the experimental results conducted on

the YALE, ORL, and PIE databases. 

Recognition rates as a function of the variation in dimensions are shown in Fig. 5 . As seen from Fig. 5 and Table 2 , the

three algorithms of the PRNF framework obtain better recognition rates than other robust NMF methods, which shows the

robustness to corruption in data. 
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Fig. 4. Images with random corruption: (a) YALE, (b) ORL, (c) PIE. 

Table 3 

The performance (recognition rate (%) and standard deviation) of testing outliers with different methods on the YALE, ORL, and PIE 

face databases. 

Databases NMF RNMF-21 RNMF-1 RNMF PRNF-1/2 PRNF-1 PRNF-21 

YALE 78.78 ± 2.87 79.22 ± 4.12 80.33 ± 4.55 82.11 ± 2.97 83.44 ± 4.66 84.67 ± 3.49 84.11 ± 5.15 

ORL 65.05 ± 3.61 65.75 ± 4.11 66.75 ± 6.18 68.50 ± 5.19 70.75 ± 2.84 72.65 ± 4.27 71.05 ± 3.86 

PIE 68.21 ± 3.54 69.54 ± 1.36 71.22 ± 2.78 72.56 ± 3.94 79.96 ± 1.86 81.38 ± 2.66 81.11 ± 3.52 

Table 4 

The performance (recognition rate (%)) of testing on occlusions with different methods on the 

AR face database. 

Occlusion NMF RNMF-21 RNMF-1 RNMF PRNF-1/2 PRNF-1 PRNF-21 

Sunglasses 59 .25 62 .25 62 .50 63 .75 71 .50 72 .50 70 .00 

Scarf 50 .25 55 .25 53 .00 54 .00 65 .50 67 .50 64 .50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

 

 

 

7.5. Face recognition with outliers 

In our experiments for testing outliers, we selected three face images in the AR database as outliers. We used the selected

images to substitute three images of each subject in the YALE, ORL, and PIE databases. Fig. 6 shows the images of one subject

used in our experiments. We use the three outlier images and randomly selected two images of each subject to construct

the training set; the remaining images made up the test set in the YALE, ORL, and PIE databases. Each experiment was

conducted ten times over different feature dimensions and the average accuracy is reported. Fig. 7 and Table 3 show the

experimental results for face recognition with outliers. 

As seen in Fig. 7 and Table 3 , the three PRNF algorithms obtain better recognition rates than other robust NMF methods,

which shows the robustness of the PRNF framework to outliers. 

7.6. Face recognition with occlusions 

In this subsection, we test the robustness of the proposed method to occlusions in face images. Experiments were con-

ducted on the AR database. Fig. 8 shows face images of one subject used in our experiments. Experiments were divided into

two parts (denoted as Exp 1 and Exp 2). Exp 1 tests the robustness of sunglasses occlusion and Exp 2 tests the robustness

of scarf occlusion. In Exp 1, Fig. 8 a, b, c, and d are used for training, and Fig. 8 e, f, g, and h are used for testing. In Exp 2,

Fig. 8 o, p, q, and r are used for training, and Fig. 8 s, t, u, and v are used for testing. Fig. 9 and Table 4 illustrate classification

accuracy for sunglasses occlusion and scarf occlusion, respectively. 

7.7. Feature selection experiments 

In this section, we conducted experiments on the YALE and ORL databases with “salt & pepper” noise to demonstrate the

effectiveness of f eature selection for the proposed methods. We selected two other feature selection methods for compari-

son. The first is the filter method and the other is the wrapper method. We computed the Fisher criterion C of each feature

in the filter method. That is C = t T S b t/ ( t 
T S w 

t) , where S b and S w 

are the between class and within class scatter matrices,

respectively [39] . We select features corresponding to the first largest C. This method is named FISH. The wrapper method

is a genetic algorithm (GA) [22] . There are two parameters in GA, i.e., the number of iterations G and the number of individ-

uals T in each population (further details in [39] ). In our experiments, we use G = 300 and T = 300 . Fig. 10 shows feature
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Fig. 5. Face recognition accuracy with corruption for different feature dimensions in NMF, RNMF-21, RNMF-1, RNMF, PRNF-1/2, PRNF-1, and PRNF-21 on 

three databases: (a) YALE, (b) ORL, (c) PIE. 

Fig. 6. Single subject images with outliers. The first three images are outliers. (a) YALE, (b) ORL, (c) PIE. 

 
selection performance of the proposed algorithms. From Fig. 10 , we observe that FISH and GA are worse than PRNF-1/2,

PRNF-1, and PRNF-21. 
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Fig. 7. Face recognition accuracy with outliers for different feature dimensions in NMF, RNMF-21, RNMF-1, RNMF, PRNF-1/2, PRNF-1, and PRNF-21 on three 

databases: (a) YALE, (b) ORL, (c) PIE. 

Fig. 8. Images for one subject in the AR database. 

 

 

 

 

7.8. Convergence study 

As proven in previous sections, we used iterative updating rules to obtain the local optimum of PRNF-1/2, PRNF-1, and

PRNF-21. In this subsection, we experimentally show the convergence speed of our algorithms on the YALE database with

outliers. 

We compare the convergence speed of the proposed method, i.e., PRNF-1/2, PRNF-1, and PRNF-21. Fig. 11 shows the

convergence rate of the three algorithms on the YALE database with outliers. In Fig. 11 , the number of iterations is shown

on the x-axis and the objective function value is shown on the y-axis. 
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Fig. 9. Experimental results for occlusions on the AR database. (a) Sunglasses, (b) Scarf. 

3 3.5 4 4.5 5 5.5 6 6.5 7
70

75

80

85

90

95

100

Number of Training Samples

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

FISH

GA

PRNF-1/2
PRNF-1

PRNF-21

3 3.5 4 4.5 5 5.5 6 6.5 7
72

74

76

78

80

82

84

86

88

90

92

Number of Training Samples

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (

%
)

FISH

GA

PRNF-1/2
PRNF-1

PRNF-21

a b

Fig. 10. Classification results of feature selection approaches. (a) Results on the YALE database. (b) Results on the ORL database. 

 

 

 

 

 

 

 

 

7.9. Observations and discussions 

Observations and discussions based on the experimental results are provided below: 

(1) As shown in Fig. 3 and Table 1 , RNMF-21 is more robust than NMF with respect to the recognition rate of data with

noise. In the PRNF framework, PRNF-21 has the highest recognition rate. This indicates that PRNF-21 can effectively

weaken the disturbance of random corruption in order to preserve local geometric structure and thus improve per-

formance. 

(2) In the experiments of random corruption, we see that RNMF obtains a higher recognition rate than RNMF-21 in most

cases ( Fig. 5 and Table 2 ). PRNF-1 also has a higher recognition rate than PRNF-21. The reason may be that the L 1 
norm based method is more suitable for classifying data with random corruption than the one based on the L 2 , 1 
norm. 

(3) As shown in Fig. 7 and Table 3 , RNMF-21, RNMF-1, and RNMF perform better than NMF in the experiments containing

outliers. RNMF has a higher accuracy than RNMF-21 and RNMF-1, and PRNF-1 has a higher accuracy than PRNF-21

and PRNF-1/2; these experiments show that the L 1 norm is more robust than the L 2 , 1 to outliers. Recognition rates

of the three PRNF algorithms are higher than NMF, RNMF-21, RNMF-1, and RNMF. This indicates that introducing a

sparsity constraint and local geometrical structure into the objective function simultaneously can effectively reduce 

the negative influence of outliers. 
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Fig. 11. Convergence rate of PRNF on the YALE image database with outliers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4) In the occlusion experiments shown in Fig. 9 and Table 4 , the recognition rate of RNMF-21 is still higher than NMF,

RNMF-1, and RNMF, which indicates that RNMF-21 is more robust than NMF, RNMF-1, and RNMF to image occlusions.

NMF is very sensitive to occlusions, thus it obtains the lowest recognition rate. In terms of recognition rate, the pro-

posed PRNF framework is the most robust among the compared methods. Usually, PRNF-1 obtains better performance

among these methods. 

8. Conclusions 

In this paper, a novel framework named Projective Robust Matrix Factorization (PRNF) is proposed for robust face recog-

nition. In this framework, we derive three methods for robust classification and feature extraction. We introduced the L 1 / 2 ,

L 1 , and L 2 , 1 norms as sparsity constraints on the noise matrix, respectively. PRNF can reduce the negative influence of noise,

occlusions, and random corruptions to learn the optimal projections that preserve manifold structure. The nonnegative base

matrix is more suitable for feature extraction and classification than traditional NMF and its existing robust variations. Ex-

perimental results on four public face databases verified that PRNF obtains better performance than state-of-the-art robust

NMF methods when data contains noise or outliers. 
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